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Abstract. An extended integrity basis ( E I B )  of a polynomial algebra in a set of variables on 
which a finite group operates includes the ordinary integrity basis of invariants and linear 
integrity bases of covariants. The latter are defined as sets of covariants of a given type such 
that any other covariant of this type is expressible as a linear combination of basic ones with 
invariants as coefficients of this combination. A constructive method of derivation, based 
on successive Clebsch-Gordan reduction and elimination of redundant covariants, is 
described, and the ’extended Noether’s theorem‘, which states that the EIB of a finite group 
in a finite set of variables is finite, is proved with its use. It is shown that EIBS in irreducible 
sets of variables are fundamental for a given group because overall homogeneous EIBs in 
any set of variables can be constructed with their use for this group. A relationship between 
this method and theory based on a consideration of Molien series is established. It is shown 
that the division of invariants into denominator and numerator invariants enables one to 
construct general invariant functions as well as functional covariants. 

1. Introduction 

An algebra 9 of polynomials p ( x )  in variables x = (xl, x2, . . . , x,) on which there acts a 
group G of linear transformations contains a sub-algebra PPI of invariant polynomials. 
If the group G and the number n of variables x ,  are finite, then the algebra B1 is 
generated by a finite set of polynomials called the ‘integrity basis’ of P1. This statement 
is usually referred to as Noether’s theorem (Noether 1916, Weyl 1946), though systems 
of fundamental polynomials had previously been introduced by Hilbert (1890, 1893). 

Polynomials which transform by one-dimensional ireps (irreducible represen- 
tations) of G and sets of polynomials which transform as bases for many-dimensional 
ireps of G form linear spaces over the field of complex numbers. Such sets will be called 
here ‘covariants’ (Weyl 1946); in the one-dimensional case we shall also use the term 
‘relative invariants’ (Burnside 1955). It turns out that these spaces can be generated by 
finite sets of covariants, called here ‘linear integrity bases’, in such a way that any 
covariant of a given type can be expressed as a linear combination of basic ones with 
invariants as coefficients of the linear combination. The integrity basis of invariants and 
the linear integrity bases of covariants will together be called the ‘extended integrity 
basis’ (EIB) of P (with respect to a given G), and the statement that the EIB is finite will 
be referred to as the ‘extended Noether’s theorem’. The finiteness of linear integrity 
bases for subgroups of Coxeter groups has been proved by McLellan (1974), who has 
also shown the structure of covariants using generalised Molien series. 

The aim of this paper is: (i) to modify an algorithm for deriving the EIB of abelian 
groups (Kopsk9 1975) so that it can be used in the general case; (ii) to prove the 
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'extended Noether's theorem' with the use of this algorithm; and (iii) to show that, for a 
given group G, the EIBS in sets of variables belonging to a single irep are fundamental as 
all other EIBS can be derived from them. These EIBS for ordinary and double crystal 
point groups will be given explicitly in two further papers (Kopskj, 1979a,b). 

Patera et a1 (1978) and Desmier and Sharp (1978) have recently approached the 
same problem for ordinary and double point groups with the use of generalised Molien 
series, following the pattern of McLellan (1974). As this introductory paper seems 
most convenient for confronting both methods, we include the part concerning Molien 
series and the structure of P I  and of spaces of covariants. 

Section 2 presents the Clebsch-Gordan (CG) reduction in the form of CG products 
which give a unified prescription for the construction of covariants on which the 
construction of EIBS is based. In § 3 we consider the algebras 9, P I  and spaces of 
covariants as graded algebras and spaces and their characterisation by Molien series. 
Section 4 contains basic theorems on the structure of EIBS and a discussion of the use of 
Molien series in comparison with the constructive approach which is given in 5, where 
the algorithm is described and the extended Noether's theorem proved with its use. 

Throughout we use a shorter-term G-module (Hall 1959) instead of carrier space 
for a representation of G;  if this representation is specified by characters ,y(g), we 
specify the G-module also more closely as the ,y(G)-module. G-modules are consi- 
dered as linear spaces over the field of complex numbers so that reducibility means 
complete reducibility. And, to compare our terminology with that of Patera et a1 
(1978), let us say that their (Fa, r)-tensor is our ro,-covariant on the space L,, which 
transforms under G by representation r. 

2. G-modules and Clebsch-Gordan reduction 

2.1. G-module and its adjoint, functional G-module and covariants 

Throughout the paper we consider G as a finite group with K classes of ireps ,ye (G),  and 
L, as a X(G)-module. In each class ,y,(G) we also fix one certain matrix irep 
roe(G): g+D'"'(g) for all further considerations. If n, is the mcltiplicity of x,(G) in 
,y(G), then L, splits into a direct sum of minimal (irreducibile) ,ya(G)-modules Loa: 

In a certain basis { e , } ,  i = 1, 2 ,  . . . , n = dim L,,, we obtain the matrix representatiori 
T(G): g + D ( g ) ;  some similarity transformation leads to a basis {eau,l}, i = 1, 
2, . . . , d, = ,yo(e) = dim L,,, where a set of vectors with fixed a ,  a spans L,, and defines 
irep roe ( G ) .  We write, gsing summation convention, 

gel = Q l ( g ) e , i  &eao.L = 0::' (g)euu,,.  (1) 

g f b ,  y, . . . ) = f ( g - ' x ,  g- ly , .  . .I.  ( 2 )  
The space in of linear functions on L,  is called adjoint to L,; its bases {&(x) = x,} 

of L,, 

The action of g E G on a function f ( x ,  y, . . .) of x, y EL, is defined by 

and [&u, l (x)  = x,,.,), where x = x,e, = ~ ~ ~ , ~ e ~ ~ . ~ ,  are adjoint to bases { e , }  and 
respectively. From (2) it follows that 

gxl = dJl ( g ) x J ,  gx,,,, = d:P'(g)xuu./ (3) 
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where d = (Dt)-'  = ( D - l ) t  denotes an adjoint (transposed and reciprocal) matrix to D. 
Since tr d = (tr D)*, i,, is a ,y*(G)-module and splits into 

o = l  a = l  

where i,, are adjoint to L,, ,yz(G)-modules spanned by {x,,,~}. 

covariant if 
A set f a ) =  ( f o l ,  f a * ,  . . . , f a d , )  of functions on L, is called a (functional) To,- 

In the case of the identity irep (a  = 1) we say that f l  is an invariant; in the case of 
one-dimensional ireps we also use the term relative invariant. The sets x?) = 
( x , ~ , ~ ,  x,,,~, . . . , x,,,~,) are linear ro,-covariants. The properties of covariants are 
discussed in Weyl (1946), who introduced this term. 

2.2. Clebsch-Gordan products o f  covariants 

Instead of tabulating the CG coefficients like, for example, Koster et a1 (1963) did, we 
prefer io present the CG reduction by means of CG products. To  do it in a standardised 
way, we introduce a set of typical Covariants x ' ~ )  = ( x u l ,  x,z, . . . , xod,), a = 1,2 ,  . . . , K .  

We then take the complete set of typical variables x,,, looking for transformation 
properties of their bilinear combinations. Let r,WS = rpOr, = . . . 0 (app)r, 0 
. . . , [r:] = . . . O[aap]T, 0. . . , and {r?} = . . .@{aap}r, 0. . . . Then there exist 
(app) linearly independent ro,-covariants, called CG products of x"", x f p ) ,  

and also (x"), x'~'):', p ) y  m = 1 , 2 , .  . . , (ap,u) ( 5 )  

with components 

(6) 

The CG coefficients can be chosen to satisfy ( a i p j ~ p k ) ,  = (pjai Ipk),, and to form 
symmetric and antisymmetric CG products for (r f p :  

9 (7) )tn. 

If a = p, then the total number of ro,-covariants, which are linearly independent 
CG products of x ' ~ )  with itself, is (aap) = [(rap] +{asp}, and it is possible to make a 
choice of [crap] symmetric and of {aap}  antisymmetric CG products. The symmetry 
and antisymmetry is more clearly seen if we distinguish one of the covariants by a prime. 

Neglecting normalisation we can write a complete set of bilinear covariants into a 
convenient table which gives a prescription for the multiplication of covariants in the 
general case. Such tables for crystal point groups have already been given (KopskL 
1976a,b); for crystallographic double point groups we shall give them in the second of 
the subsequent papers (Kopsky 1979b) together with the EIBS. 

The CG product (f(*), f('))$) of covariants fo', f'" is defined by (6), where we 
replace x byf. Iff(u),  f'" are defined on different spaces (on different variables), then all 
their CG products are linearly independent for all dadS binoms f o l f S ,  are linearly 
independent. This, however, need not be true if the spaces of variables for the two 
covariants have non-vanishing intersection. In this case we can formally construct the 
CG products as well, but some of them may vanish or be connected by linear relations. 

(p), 1,) - 
I m . k  - 1 (ai,% 1 pk)mXotXp,. 

1.1 

(x ic)  xiP));' * xlu) ( & I  
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The simplest example is provided by the antisymmetric product of the covariant with 
itself. An important property of CG products is their distributivity: 

where z,, zb are complex numbers. 

2.3. In cariant Clebsc h-Gordan products 

Two typical covariants x'" '  and x"' produce an invariant CG product (x'"', x ' " ) ~  as 
many times as given by the reduction coefficient 

This number is 1 if xa(G)  = ,yg (G), and zero otherwise. Let us recall the Frobenius- 
Schur (1906) test by which we distinguish three kinds of ireps: 

1 real (integer, 1st kind) 

(9) 

0 half-real (3rd kind). 

1 
complex (half-integer, 2nd kind) 

The irep is half-real only if ,y,(G) is complex; then there exists a class xP(G) = ~2 (G) 
not equivalent to x,(G), and (a@ 1) = 1. The character x,(G) is real if the irep is real or 
complex, and hence in both these cases (aa  1) = 1. However, 

and 

Substituting (9) into these two relations, we obtain [aa 11 = 1, {cua l}  = 0 for a real irep, 
and [aa 13 = 0, {am 1) = 1 for a complex irep. Thus we have: 

Theorem 1. Each typical covariant XI,' couples into an invariant CG product (x'OL', x ' " )~  
with just one type of covariant x"). If the irep I'o,(G) is half-real, then the covariant 
x(') belongs to a complex conjugate irep FoP(G) which is not equivalent to ro,(G). If 
ro,(G) is real or complex, then x'") couples into an invariant CG product only with 
itself; this product is symmetric in the first case and antisymmetric in the second case. 
There exist, therefore, only the following types of invariants: 
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3. Polynomial algebra on a G-module 

3.1. Homogeneous and overall homogeneous grading 

The set P(L,) of polynomials on L, is a graded G-module and an algebra. The natural 
grading is given by the degrees k = 0, 1 ,2 ,  . . . of homogeneous polynomials, and P(L,) 
can be written as a direct sum 

Here PPL,, 0) = @, the field of complex numbers, P(L, 1) = i,, and 9(L, ,  k )  = [i,“], 
the space of kth-degree homogeneous polynomials. A finer grading is obtained if we 
split L, into the direct sum of its minimal submodules Lo, and express P(L,) as a direct 
product 

P(L,)= 6 & P(L,,) 
o = l  a = l  

of its subalgebras P(L,,), each of which has its own grading 

X 

PPLaa) = @ PPLaa,  kea). 
k, ,  = O  

We denote by k = ( . . k,, . . .) = Xu,, k , , l , ,  the degrees of overall homogeneous 
polynomials, i.e. of polynomials homogeneous of degree k,, separately on each of L,,. 
The set of degrees k is a lattice 5Y (Hall 1959, chap. 8) in which: (i) inclusion relation 
k s k’ means k,, s kk,  for each a, a,  the sharp inclusion holding if k,, < kh, at least for 
one a ,  a ; (ii) the least upper bound k’ U k“ and the greatest lower bound k’ n k” is that 
k = & , k o a l a ,  for which each k,, is the greater and lower of the kh, and kz,, 
respectively. The lattice X contains the least element k = 0, but not the greatest 
element, and satisfies the Jordan-Dedekind condition: the lengths of all ascending 
chains from k = 0 to any given k is the same and equals k = Ikl= Xo., k,,, the total 
degree. The lengths of all chains between two given kl, kZ are also the same and equal 
k l - k 2  (chains ascending or descending for positive or negative values of k l - k Z  
respectively). 

In this notation we have: 

PW,, k)= 6 & WL,, kea)  (13) 
a = l  a = l  

P ( L ,  k ) =  @ P(L,, k), 
] k l = k  

and, using either (11) or (13), 

PEfl) = @ P ( L ,  k) = % @ ( 6 & PL,, k , , ) )  
k s W  k = O  lkl=k o = l  a = l  

The fine grading performed here can be used with respect to any division of L, into its 
subspaces. However, the grading used here is preserved by the group G, and the fine 
grading is the finest one which is preserved by Ci. This is important, as it is only in this 
case that the spaces 9’(L,, k) are G-modules. 
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3.2. Algebra of invariants and spaces of covariants 

The set Pl(L,) of invariant polynomials on L, is a subalgebra of B(L,). Relative 
invariants and components of ro,-covariants form linear spaces P!') (L,) which are 
subspaces of P(L,,). The covariants themselves also form linear spaces which we shall 
write formally as 

9+)(L,) = (P?)(L,,), S:"'(L,), . . . , S%)(L,,)) .  

The linear basis of PI(LnI) together with components of covariants which form bases of 
LP(~'(L,,)~S form a complete basis of P(L,,). The grading of the P(L,,) is transferred to 
the algebra P1(L,) and to spaces B'")(L,,), so that 

where CPl(Ln, k )  = Pl(L,,) n P(L,, k )  and Pl(L,,, k )  = P1(L,) n B(L,, k )  are spaces of 
homogeneous and overall homogeneous invariants of degrees k and k respectively. 
Analogously P$")(L,,, k )  = Pf''(L,) n P(L,,, k )  and Pfu)(L,z, k) = B:m)(L,,) n P(L,, k) 
are spaces of the ith components of homogeneous and overall homogeneous Tau- 
covariants of degrees k and k respectively, from which we compose the spaces 
LP(~)(L,,, k ) ,  LP(")(L,, k) of these covariants. 

Let us finally note that 

and analogously for P(L,,, k). Further, we denote polynomial rou-covariants by 
p'"'(k),  the degree being indicated in parentheses. 

3.3. Construction of linear bases of covariants by successive Clebsch-Gordan reduction 

First we shall discuss the construction of overall homogeneous bases of TO"- covariants. 
Tables of CG products allow the construction of higher-degree covariants from 
lower-degree ones. Let Y(L,, k )  = @u,L9!")(L,,,  k) and P(L,,, k ' )  = OP,,$')(L,, k ' )  be 
the spaces of overall homogeneous polynomials of degrees k and k' respectively, and let 
the sets of covariants p y ' ( k ) ,  pb"(k'), complete and linearly independent, be known. 
Then we can construct the space s(L, ,  k + k') = @&.kPk)(Ln,  k + k') as a linear 
envelope of components of CG products (p '" ' (k) ,  p ( ' ) (k ' ) ) : ) .  

Generally not all of these covariants are linearly independent. The case when they 
are is covered by the following: 

Theorem 2. It is possible to write P(L,,, k + k') as a direct product 

S(L,, k + k') = P(L,, k)@P'L,, k') (17) 

if and only if k n k '  = K E X)%o, where X 0  is the sublattice of X corresponding to degrees 
of variables belonging to one-dimensional ireps only. 
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Proof. The number 

N ( d ,  k) = ( d + k  - ') 
d - 1  

of linearly independent polynomials of degree k in d variables satisfies the inequality 
N ( d ,  k ) N ( d ,  k') N ( d ,  k + k ' ) ,  where equality holds if and only if d = 1 or if one of 
k, k' = 0. Taking into account that dim P(I,,, k )  = II,,,N(d,,, k,,) we see that the 
dimensions of both sides of (17) coincide if and only if k n k' E XO.  

It is easy to conclude that in this case the covariants constructed are linearly 
independent. Overall homogeneous covariants can be constructed by successive 
application of this procedure, starting with linear covariants x r )  and following ascend- 
ing chains in X. In view of theorem 2 it is, however, of advantage to construct first the 
covariants in sets { x , ~ , ~ }  for fixed a, a,  i.e. the covariants relevant to subalgebras P(Leu), 
and then to construct the whole algebra as direct product (1 1). Another advantage of 
this approach is that all algebras PPL,,) are alike and may be considered as copies of 
one algebra PPI,,), described in a set of typical variables. This is just another version of 
the 'symbolic method' in the theory of invariants (Weitzenbock 1923). These algebras 
for ordinary and double crystal point groups will be considered in two further papers 
(Kopsky 1979a,b). 

3.4. Molien series and their generalisation 

A powerful analytic characteristic of graded algebras and spaces is given by Molien 
series. The grading of Pl(I,, ,) and of @el(Lfl) is described by functions 

FI(Ln, A )  = C nl(L,,,  k ) ~  ', F,(L,,A)= n , ( L , , k ) A k  (18) 

where A is an indeterminate; nl(L,, ,  k) = dim P1(I,,,, k) and n,(L,, k) =dim k )  
are the numbers of linearly independent invariants and Ton- covariants of degree k 
respectively. 

k = O  k = O  

Theorem 3 (generalised Molien theorem). The above defined functions equal 

Both relations follow from the known fact that the coefficient at A k  in the expansion of 
30 

det(1- AD(g))  = 2 [ x k ( g ) ] A  
k =O 

is the symmetrised kth power of the representation x ( G ) :  g + D ( g )  acting on L, 
(Molien 1897, Burnside 1955). The functionsF1(L,, A )  are regularly used in the theory 
of invariants, while the generalised F, (I,,,, A )'s were introduced relatively recently by 
McLellan (1974). The whole algebra P(I,,) is a free algebra generated by {xi}, and its 
Molien function is 
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Comparing numbers of independent polynomials and of covariants of any degree, we 
find that Molien series satisfy a relation 

To describe the fine grading by k, we assign to each subset { x ~ ~ , ~ }  or, in other 
words, to each space L,,, its own indeterminate A,,; we shall write for brevity 
A = . , . A $ y .  . . . Then we define Molien series by k 

Fa (L,, A ) = 1 n, (L,,, k ) A  Ir (22) 

where again nl(L,, k) =dim ?Pl(Ln, k), n,(L,, k) =dim &OL)(L,, k). The Molien series 
for the whole algebra P(Ln)  is now 

k G X  
F i ( L ,  A )  = C ni(Lfl, k M  I r ,  

k E X  

must hold. 
Molien series with fine grading are used by Solomon (1977), Patera er a1 (1978) and 

Stanley (1978). Recalling the previous section we conclude that, if Ln n L, is empty, 
we can write Molien series for 9''')(Ln OL,) as 

Molien series for subalgebras P(L,,) become in this connection of great importance as 
other series can be constructed from them using ( 2 5 )  successively. Since all these 
subalgebras are copies of ?P(La) over the typical module La, the series will have the 
same form differing only by indeterminates Ana. For P(L,) we write 

with the dimensionality relation 

These series and composition formula (25) are considered by Patera era1 (1978). A link 
between this description and multiplication (1 1) of subalgebras P(La,) is obvious. 

4. Extended integrity bases 

Unless stated otherwise, invariants and covariants in the following are polynomial 
invariants and covariants. 
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4.1. Extended Noether’s theorem 

Theorem 4 (extended Noether’s theorem). (i) There exists a finite set of (homogeneous 
or overall homogeneous if desired) invariants J, which generate the algebra 91 (L,) in 
the sense that any invariant J is expressible as a polynomial J = P(J,). 

(ii) To each ro,(G) there exists a finite set of ro,-covariants p?’ (again homo- 
geneous or overall homogeneous if desired) which generate P‘“’(L,) in the sense that 
any ro,-covariant p‘“’ is expressible as 

where J, E Pl(Ln)  are invariants. 
Part (i) of the theorem is the ordinary Noether’s theorem. Sets of generating 

invariants are called integrity bases; for sets of generating covariants we propose the 
term ‘linear integrity bases’, and together we shall call these sets the ‘extended integrity 
basis’. A constructive proof of part (ii) will be given in the next section together with the 
description of an algorithm for the construction of a minimal EIB. 

A more intricate problem then to find the EIBS is to find a unique expression of an 
invariant or of a covariant in terms of generating ones. The theory of invariants is well 
developed in this direction, and here are the most important results: 

Theorem 5. The algebra Pl(Ln)  contains just n algebraically independent invariants 
11, 12, . . , , I, (homogeneous or overall homogeneous if desired); see, for example, the 
book by Burnside (1955). 

Hence PI@,,,) contains a free subalgebra Bld(L,) generated by 11, 12, . . . , I,,. 

Theorem 6. ??Id&,) = P1(L,) if and only if the group G (as a group of transformations 
on L,) is generated by reflections or by pseudo-reflections. 

The ‘if’ part of this theorem for reflection groups has been proved by Coxeter 
(1951); see also Coxeter and Moser (1972). The theorem has been completed by 
Sheppard and Todd (1954) and Chevalley (1955). 

Theorem 7. If G and n =dim L, are finite, then Bl(L,) is Cohen-Macaulay algebra or, 
in other words, there exists a set of invariants E l ,  E2, . . . ,E,,,, m finite, such that 
Bl(L,,) = P l d ( L n ) ( l  CBE1 CBE20. . . CBE,), so that any invariant is uniquely expressible 
as 

(Hochster and Eagon 1971, Stanley 1978). 
This result is of great importance because it admits a generalisation. Indeed, if an 

invariant function f l  on L, can be developed into a power series, then by rearranging 
terms of the same degree we can bring it to the form 

where f o ( l I ) ,  f k  ( I j )  are now functions. Functions of three-dimensional vectors, invariant 
under crystal point groups, were given in this form by Doring (1958). 
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Of the same importance for covariants is: 

Theorem 8. Any ro,-covariant is expressible as 

where the number of p ? ) ' s  is finite. This has been proved by McLellan (1974) for 
subgroups of Coxeter groups. The proof can be carried out in the same way for any 
finite group which can be embedded in some group generated by pseudo-reflections. 
The invariants I, in both cases are invariants of this pseudo-reflection group. The 
constructive proof of the extended Noether's theorem given in 9 5 holds, on the other 
hand, for any finite group. Again we can generalise (31) to get a functional form 

of a covariant on L,. Due to their relationship to Molien series (§ 4.3) the invariants I, 
and Ek are called denominator and numerator invariants (McLellan 1974). Other 
terms-free and transient invariants-are used, for example, by Sloane (1977). 

4.2. Fundamental algebras for a finite group 

All theorems formulated in 8 4.1 hold for the typical algebras P(La)  as well. The EIBS 

of these algebras, a-running ireps of the group G, are fundamental for this group. With 
their use we can determine the EIB for any P(Lfl). Indeed, the subalgebras P(L,,) are 
copies of PPL,), so that adjoining indices a to variables x,,~ we get the EIBS of the 
P(Lau)'s at once from the EIB of P(t,). All copies of invariants and covariants in 
typical variables will certainly belong to the EIB of P ( L  j if the originals belong to the 
E I B  of P((L,), and each of them will be a polynomial in a single set of xau,,. Particularly, 
the copies of denominator invariants will again be denominator invariants, and their 
total number will be just 

n = C duna 
a = l  

because there are d, of them for each B(L,,) and the total number of P ( L a a )  is nu. 
Further, we shall have invariants and covariants in which variables belonging to 
different PP(Lau)'s will be coupled. These can be obtained by multiplication of 
subalgebras according to CG tables with elimination of redundant ones as described by 
the algorithm below. All invariants obtained in this way will be numerator ones because 
the denominator ones are already exhausted. 

One possible and useful generalisation is at hand. As all P(L,,)'s are copies of 
Pd,,) ,  so are the products B(L,u)BP(Lau ) copies of P(t , )@P(L:,) ,  and so on for 
greater numbers of P\L,,)'s i n  the product. Preliminary investigation leads us to 
believe that the EIB of a product 

plavs, in the case of non-abelian groups, the same role as the typical EIB of abelian 
grcups, i.e. it already describes all possible EIBS. Notice that here N =dim Lh is the 
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order of the group G;  LN can be interpreted as the group ring of G, and the 
representation of G on LN is its regular representation. 

4.3. Denominator and numerator of Molien series 

Proposition. If invariants of Sl(L,) are expressible by (29), and ro,-covariants of 
Pea) (L,) by (31), then Molien series are of the form 

Fi (L, A = Ni(A ) / D  (A 1, F, (L,, A 1 = Ne (A  ) / D O  1 (34) 

where 
n m 

D(A)= n (l-Aql), Nl(A) = 1 + 1 A P k ,  N,(A) = A’-. 
j = l  k = l  a 

Here qj, P k  and paa are the degrees of homogeneous basic invariants 4, Ek and 
covariantsp?’. Analogous expressions will be obtained with A, q,, p k  andp,, if the basic 
invariants and covariants are overall homogeneous. According to Q 4.2 the qj ’s  will be 
the degrees in single sets xUa,( i.e. qlnnl,,, and the denominator expressible as 

o = l  a = l  

where 
4. 

D,(A,,)= n (1 - A > p ) .  
1o.a = 1 

The proposition follows at once from definitions (18) and (22). 
It is so far not clear whether this proposition can be reversed. If it can, then Molien 

series can be calculated relatively easily from (19) and brought to the form (34) which 
gives information about the structure of EIBS: numbers and degrees of denominator and 
numerator invariants and of basic covariants. The invariants and covariants can then be 
calculated by brute force. This is exactly what Patera et a1 (1978) did for finite 
subgroups of S0(3) ,  and Desmier and Sharp (1978) for finite subgroups of SU(2). 

Mallows and Sloane (1973) conjectured tentatively (for invariants) that reversal of 
the proposition is possible. Further, the following counter-example has been discussed 
from which it follows that the conjecture is generally false (Sloane 1977, Stanley 1978). 
The algebra of invariants generated by diag(-1, -1, 1) and diag(1, 1, i) acting on 
L3 = (x i ,  x2, x 3 )  is P1(L3) = PP,,[x: ,  x : ,  x:](l Oxlx2) ,  and its Molien series 

admits a second form of the type (34) to which there is evidently no corresponding 
integrity basis (the inner reason for this is that the group is not a subgroup of a 
pseudo-reflection group with three quadratic invariants). It is, however, easy to resolve 
this example using fine grading which gives Molien series 

with no problem of the above type. 

algebras, but so far we do not know a rigorous answer. 
This indicates that the conjecture is perhaps true for Molien series of our typical 
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4 .4 .  Reducible and irreducible inuariants and couariants 

Invariants behave under G like numbers, so that 'linear combinations' C,Jafr i  of 
ro,-covariants with J, E PI(L,) are again r,,-covariants, and the distributive rule (8) 
for CG products 

holds also for invariants as coefficients. 
However, P iU1(Ln)  cannot be considered as vector space over Pl (Ln) ,  since the 

latter is an algebra but not a field. Consequently a linear relation Z,J,p:'  = 0 does not 
imply that one of p',"', say p f ) ,  is expressible as XazbJLp',"', and the linear indepen- 
dence over P l ( L n )  cannot be introduced.? 

Instead we shall introduce a concept of reducibility. 

Definition: (i) An invariant J is said to be reducible if i t  can be expressed as a 
polynomial P(Z,) without a linear term in some set of invariants I,. 

(ii) A ro,-covariant p'"' is said to be reducible if it can be expressed as a 
combination pi") = CaJnpha), where pha) is some set of ToU-covariants and Jn-invariants 
without a constant term. Otherwise we say that the invariant or covariant is irreducible. 

Lemma 1. ( i )  The set PI&,) of reducible invariants is a linear subspace and also a 
subalgebra of Pl(L,,). 

(ii) The set P?'(L,,) of reducible covariants is a linear subspace of the space 
8'" YL,, 1. 

Proof. It is sufficient to realise that a linear combination or a product of polynomials 
without linear terms is again a polynomial without a linear term, and that the product of 
a polynomial without a constant term and any polynomial is again a polynomial without 
a constant term. 

Lemma 2. If at least one covariant in a CG product is reducible, then the CG product is 
reducible. Consequently, whatever covariants may be constructed by successive CG 
multiplication from a reducible covariant, all of them will be reducible. 

5. Minimal extended integrity basis and its derivation 

5.1. Minimal extended integrity basis 

Irreducible invariants and covariants do not generally form spaces. Let us define spaces 
of homogenous or overall homogeneous reducible invariants and covariants by 
Plr(L,,, k )  = Y 1 ( L n )  n 9,(L,,, k )  and analogously for k and for PY)(Ln, k )  or Py ' (Ln,  k )  
with the use of spaces of components. To complete the spaces Pl(L,,, k )  and P'"'(Ln, k )  
we have to choose some complementary subspaces PI&,, k )  or  @?'(L,,, k ) ,  so that 
PI(L, A )  = Pic(Ln, k)OP1r(Ln9 k ) ,  and 9'a ' (L, , ,  k )  = @F1(L,z, k)O@'?'(L,,, k ) .  

f See discussion (Kopsky 1978) of a theorem formulated by Hopfield (1960) and given in the book by Lax 
(1974) as theorem 3.8.1. 
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Theorem 9. Whatever complementary subspaces Plc(L,,, k), 9?'(L,,, k) and whatever 
linear basesJ,(k), p ; ' ( k )  in them we choose, the latter will always be the minimal EIB of 
P(L,) with respect to group G. Instead of k we may use k. 

Proof. Anyp'"' is expressible as asum of p ' " ' ( k ) ,  and any p ' " ' ( k )  as a linear combination 
of p F ' ( k )  plus reducible covariant p y ' ( k ) .  The latter is, according to definition, a sum 
of covariants J(k ' )p '" ' (k  - k'), where 0 < k' < k. Applying this procedure successively 
to p'")(k  -k') and so on, we clearly arrive at a form p'"' = X a J U p F J ,  and, if the original 
p'"' was reducible, JQ will not contain a constant term. Quite analogously we carry out 
the proof for invariants. It follows from definition that such an EIB is minimal. 

The minimal integrity basis must contain all denominator invariants but not 
necessarily all numerator invariants. The only case in which all numerator invariants 
are in the minimal integrity basis is when every polynomial Q ( E k )  without linear term 
belongs to Sld(L,,). The relations Q ( E k )  = P(Z,) form the so-called syzygies (Hilbert 
1890, Weitzenbock 1923). 

5.2. Constructiue proof of the extended Noether's theorem 

Part (i) of the theorem is the well known ordinary Noether's theorem. To prove part (ii) 
we need a lemma. 

Lemma 3. Let us adjoin a space Lob to L,, or a covariant xkp) to the original set. 
Let further Z(k + l o b )  E Pl(L, @ L o b )  be an invariant of first degree in x'bp', so that 
k n lpb = 0. Then there exists just one r,,-covariant p'"' (k) ,  where (cyp 1) = 1, such 
that Z(k + l p b )  = ( p i " ' ( k ) ,  xb")~, and the invariant is reducible if and only if p'"' (k)  is 
reducible. 

Proof. According to theorem 1 there is only one type of covariant which couples with 
xL'' into invariants, and to get the degree k +lob we must use a covariant from 
@"'(L,,, k). Let p ? ' ( k )  be the linear basis of &"'(L,,, k). Since k n lpb = 0, the set of 
invariants ZQ(k +Ipb) = ( p : ' ( k ) ,  x:")~ is a linear basis of P1(L,, @Lpb, k +lob) .  
Therefore Z(k + l o b )  = X u c a l a ( k  + l o b )  if and only if Z(k + I p b )  = (p '" ' (k ) ,  ~ b " ) ~ ,  where 
p '" ' (k )  = Xacap: ) (k ) .  If p '" ' (k )  is reducible, then Z(k +Ipb) is certainly also reducible. 
If Z(k + l o b )  is reducible, then it is expressible as a sum 

and invariants Z u ( k Z + l p b )  are expressed as CG products ( p y ' ( k 2 ) ,  x ; " ) ~ .  Hence 

p '" ' (k )  = 1 zQ(k1)p',"'(k2) 
u , k l + k > =  k 

is reducible. 
Let us now suppose that part (ii) of theorem 4 does not hold. Then there exists at 

least one type of covariant for which the linear integrity basis p r ' ( k )  is infinite. If we 
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adjoin a new covariant A-:@) to the system such that it couples into invariants with 
p f ’ ( k ) ,  then, according to lemma 3, all invariant CG products ( p y ’ ( k ) ,  are 
linearly independent and irreducible. Hence the integrity basis of invariants on 
L,  OLpb will be infinite, in contradiction to the ordinary Noether’s theorem. 

5.3. The algorithm 

The algorithm is exceedingly easy for abelian groups. In this case all spaces of overall 
homogeneous covariants (relative invariants) are one-dimensional, based on single 
monomials which are either reducible or irreducible. The product of the form (33) then 
provides the typical EIB of the group in question (Kopsk9 1975). 

In the general case we proceed to determine some bases of complementary sub- 
spaces which according to theorem 9 provide the minimal EIB. To do it we construct, for 
a given degree k,  provided we have already the bases for lower degrees, first the space 
&Py)(Ln, k )  by taking all products I ( k  - k ‘ ) p f ’ ( k ’ )  of basic (irreducible) lower-degree 
covariants with sets of linear bases of invariants of appropriate degrees k - k ’ .  The 
linear envelope of these covariants is just the space P?)(L,, k ) ,  and it is a standard 
problem of linear algebra to find some of its linear bases (check of one, say the first, 
component of the covariant suffices). 

Further we construct ‘enough’ CG products of the type ( p b p ’ ( k l ) ,  p ? ’ ( k 2 ) ) > )  with 
kl + k2 = k and pbp’ (k l ) ,  pl-“(k2) irreducible to complete the basis of P(m)(Ln,  k ) .  It is 
sufficient to consider only one pair of degrees k l ,  k 2  because this already grants that all 
space k )  will be spanned. Some of the covariants obtained this way will belong 
to B?’(L,, k ) ,  and it is again standard to determine the complementary ones. At a 
certain stage we shall find that all the covariants constructed thus are already reducible; 
then the procedure is cut off for all K 3 k .  Invariants are constructed analogously; the 
basis of 9&,, k )  is, however, constructed from polynomials in lower-degree 
invariants. To construct the complementary basis we again use only irreducible 
covariants. Dimensionality relations provide a suitable check of whether ‘enough’ 
covariants and invariants were constructed. Throughout the calculation we keep a 
record of irreducible covariants already obtained and of all linearly independent 
invariants. 

This is a description of the algorithm in its general form. In practice, however, we 
shall proceed to construct first the EIBS of typical algebras. These, for the ordinary and 
for the double crystal point groups, will be considered in two further papers (Kopsk9 
1979a,b). 

6 .  Discussion 

The construction of EIBS with use of CG products is a self-checking procedure which 
also gives an insight into relations between covariants of different types and degrees. 
3 n  the other hand, the method based on a consideration of Molien series has the 
sdvantage that we know in advance the numbers and degrees of basic covariants and 
invariants. The problem of calculation of these covariants and of selection of &he 
irreducible ones must, however, still be faced. Our impression from calculating EIBS of 
double point groups in which we have used both methods (we received the preprint by 
Patera et a1 (1978) before completing these bases) is that they are complementary 
rather than competing. 
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